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Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and accuracy of the data presented herein. The contents do not necessarily reflect the

official views or policies of the Washington State Transportation Commission, Department of

Transportation, or the Federal Highway Administration. This report does not constitute a

standard, specification, or regulation.
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Abstract

The wide variety of remote sensors used in Intelligent Transportation Systems (ITS)

applications (loops, probe vehicles, radar, cameras, etc.) has created a need for general

methods by which data can be shared among agencies and users who own disparate computer

systems.

In this paper, we present a methodology that demonstrates that it is possible to create,

encode, and decode a self-describing data stream using the following:

1. existing data description language standards,

2. parsers to enforce language compliance,

3. a simple content language that flows out of the data description language,

and

4. architecture neutral encoders and decoders based on ASN.1.
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1.  Self-Describing Data Overview

1.1  INTRODUCTION

The wide variety of remote sensors used in Intelligent Transportation Systems (ITS)

applications (loops, probe vehicles, radar, cameras, etc.) has created a need for general

methods by which data can be shared among agencies and users who own disparate computer

systems. Such data sharing requires that both the sender and the recipient of the data agree on

a method for transfer. To date, most systems constructed for this purpose (1) lack in

generality or (2) are limited to data transfers of a specific type [1, 2, 3] or (3) are so general

and complex as to be very difficult to implement [4]. The work presented in this paper was

aimed at creating a general mechanism for self-describing data transfers of data streams that

are produced by a set of remote sensors that change in number and type as a function of time.

We present our self-describing data transfer concept in the context of Intelligent Transport

Systems applications; however, our approach is applicable to a variety of data types and

sensors.

Self-describing data transfer requires information about the meaning of the data to be

included as part of the transfer [5]. These meta-data must include all information needed to

interpret the actual data stream. For example, the time-invariant properties of a remote sensor

that might be relevant include the sensor�s location, the units of measurement, and the

precision of its measurements. In addition, a description of the algorithm used to extract the

desired information from the data is required.

Any successful methodology that provides self-describing data transfers must meet

the following criteria:

1. The transfer includes all information meta-data needed to interpret the

data, together with the data themselves. If this requirement is met, the data

transfer is self-describing.
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2. The transfer method can be applied to a broad category of data types and

procurement methods. This is a requirement for data type independence of

the data transfer method.

3. The transfer method is applicable to a wide variety of computing

environments. This is a requirement for portability and general

applicability of the data transfer method.

Strictly, only the first requirement need be met to qualify the data transfer as self-

describing; the effect of the other requirements is to enhance the generality of a transfer

method. A variety of proposed data transfer mechanisms transfer the data and meaning [6, 7,

8, 9, 2, 3]. Many of the available data sharing methods involve the construction of custom

software that �understands� the meaning of the data to be transferred for each class of data

transfer [3, 2]. Such methods fail the second and third criteria listed above. They fail the

second criterion because the transfer is specific to one type of data. They fail the third

criterion unless the custom software is written in a portable manner.

We present a new approach to solving the self-describing data (SDD) transfer

problem. Our data transfer method serializes a data description, in the form of a Data

Dictionary, with the actual data to be transferred. Our data description makes use of the

power of database query languages to ease the task of constructing a Data Dictionary to

contain the necessary meta-data. Database languages are well suited for the task at hand

because they are designed for the description and categorization of data. This Data Dictionary

is the initial part of an SDD transfer, and the actual sensor data are serialized after the Data

Dictionary, as shown in Figure 1.1. An SDD transfer is composed of one Data Dictionary and

a continuous stream of sensor data. An SDD transfer ends when a new Data Dictionary is

transferred. We are proposing the SDD transfer method presented here as a robust mechanism

for distributing ITS data to Information Service Providers1 (ISPs). We are aware of two other

1See the ITS National Architecture study for more information on ISPs [10, 11]
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efforts to produce standards for communication of transportation related data. They are the

National Transportation Communications for ITS Protocol and the Transportation Network

Profile of the Spatial Data Transfer Standard. These standards were designed to meet

significantly different needs, though both are designed to solve the problem of standardized

data communication. The SDD paradigm presented here is related to aspects of both

standards.

Figure 1.1:  Data model for self-describing data transfers

The first related standard is the National Transportation Communications for ITS

Protocol (NTCIP). NTCIP is a family of communications protocols (A, B, C, E) developed

for real-time communication between a master controller and field devices such as traffic

signal controllers, environmental sensor stations, dynamic message signs, highway advisory

radio, closed circuit TV, and freeway ramp meters [12]. For example, the class B protocol is

designed for direct communication between a master controller and one or more field devices

connected by a communications cable for low-speed data transmission (on the order of 1200

baud). The target application is the control of traffic signal management systems. The

standard covers both the rules of transmission and the format and meaning of a set of

standardized messages to be transmitted.

NTCIP is basically an extension of the Simple Network Management Protocol

(SNMP) [13]. It extends the management information base hierarchical name-space defined

with Abstract Syntax Notation (ASN.1) [14] for use with SNMP. Groups of objects defined in

this tree structured name-space are referred to as Management Information Bases (MIBs) and

represent the set of objects (in the object oriented design sense) that are needed to effect the

desired control or information transfer operations. NTCIP is intended for many types of
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transportation devices, each with different database requirements. Control or data exchange is

effected by modification of the objects in the MIB associated with the device(s) being

controlled. This modification uses the get/set paradigm of the SNMP to change the values of

objects in the MIB. The resulting action depends on the programming of the controlled

devices.

NTCIP is designed to standardize the control of traffic management devices such as

traffic light controllers. The method uses a Data Dictionary, the management information

base (MIB), as a repository of information to control the external devices. A device�s

response to some change to its MIB is determined by software resident at the device. Under

that paradigm, to request data from a sensor, a management application modifies the sensor�s

MIB in a way that allows the management application to obtain the sensor data.

NTCIP is a control protocol that uses a globally agreed upon set of objects. To be

effective, the control/management software that uses the get/set operations must understand

how the software within the devices reacts to changes in the MIB. So an a priori agreement

on software functions, as well as on object definitions, is necessary.

From an NTCIP perspective, SDD transfers can be cast as a compound object for

information transfer without a priori information about the data to be shared. Thus, SDD is

targeted at information transfer and not control. The control function of NTCIP can be used

to initiate or terminate SDD transfers. The Data Dictionary components and the actual data

can be declared as objects, and an ASN.1 compound object can be created. Changes in the

MIB structure will then initiate or terminate an SDD transfer by using the SNMP paradigms.

The SDD transfer can be implemented either by viewing the MIB as a control that initiates an

out of band data transfer, as in [15], or the MIB can actually contain the components of SDD

as objects. SDD transfers leverage NTCIP in that SDD has an agreed-upon data-description

language that includes methods to describe and extract the elements of data from a data

stream without the need for a great deal of a priori knowledge. For example, it is possible to
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create an application that would operate in a Java environment and that could obtain the

methods from the Data Dictionary in the form of Java language elements. Those methods

could operate directly on the data stream, creating an automated transfer of data with only

SQL and Java as the required a priori knowledge.

The second related standard is the Transportation Network Profile (TNP) of the

Spatial Data Transfer Standard (FIPS 173) that is designed for use with geographic vector

data that have network topology. The TNP allows transfers of spatial data that can be

represented by vector objects that make up a network or planar graph. The TNP data types are

nodes and links between nodes, each of which may have associated attributes. These

associated attributes may be multi-valued and, therefore, could be used to convey time-

varying information associated with a node or a link.

The TNP provides a mechanism for defining an external Data Dictionary module that

need not be included in each transfer, thereby reducing the amount of overhead that must be

devoted to sending a dictionary module for multiple transfers that use the same dictionary.

Though it was not designed specifically for the purpose of transferring large amounts

of time-varying data, the SDTS/TNP could be used to transfer time-varying data from a set of

remote sensors. The time-invariant information about the sensors (location, sensor type, etc.)

could be represented as single valued attributes of the nodes that make up the network, and

the time-varying data would be represented as multi-valued attributes functionally dependent

on time. If the time dependent attributes were isolated into a separate table from the time

invariant information, it would be possible to send the module containing time-invariant data

first and then continue with the �open-ended� time-varying module until no more time-

varying data were desired at the receiving end. Though possible, transfer of large amounts of

time-varying data with the SDTS/TNP has two disadvantages: (1) the data stream must be

interpreted before transfer and placed into the appropriate attribute tables, possibly at a

significant cost in required bandwidth, and (2) the overall design of SDTS/TNP does not

really include the notion of a transfer of indeterminate length. Our method makes a clear
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distinction between time-invariant data (the Data Dictionary contents) and time-varying data

(the actual data stream) and allows for a more efficient treatment of the actual data stream.

1.2  DATA MODEL

In the work presented here, the data to be transferred are modeled in two components:

(1) the Data Dictionary and (2) the actual sensor data. These two components, transferred

serially, effect an SDD transfer. The Data Dictionary component is central to our self-

describing data transfer method. In our data model, the Data Dictionary comprises two parts:

(1) Dictionary Schema and (2) Dictionary Contents. These two parts provide the necessary

description of the data to make them useful to a client and are described in the next sections.

1.2.1  Dictionary Schema

The first part of our Data Dictionary is the Dictionary Schema. This comprises meta

data that specify the schema of the data description (e.g., a sensor has a name, position, and

units of measure, and the position is specified in latitude and longitude). The Dictionary

Schema is a provider-defined database schema written in a subset of Entry Level SQL-92

[16]. We chose Entry Level SQL-92 because it is fully relational, and the relational model can

represent an arbitrary set of data [17]. The SDD model presented here allows for the

construction of any schema that SQL allows, and this guarantees a powerful data-description

language. In the Dictionary Schema, the data provider should include sufficient information

about the actual data to allow a recipient to interpret those data. Because the sufficiency of

the Data Dictionary is dependent on its author, it is clear that the Data Dictionary concept

allows for self-describing data transfer, but it does not ensure that any given data transfer is in

fact self-describing. It would seem difficult, if not impossible, to make such an assurance in

an automated system. It is, however, possible to automate verification that the schema

provided conforms to the data description language.
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As part of the SDD transfer method, we have created a Schema Parser which is used

to verify the Data Dictionary schema definition. The language accepted by the parser is a

subset of entry level SQL-92 that allows definition of schemas, tables, etc. but does not

include any of the query processing facilities of a complete database language. Our intent in

defining the Schema Language is to provide sufficient power for the definition of a Data

Dictionary while simultaneously making the language simple enough that it is easy to learn.

The Schema Parser is used in two ways by our self-describing data transfer protocol.

First, the sending application uses the parser to verify that a user-provided schema definition

is valid. The second task of the parser is the construction of a parse tree that is subsequently

used to verify that the Dictionary Contents are compatible with the defined Dictionary

Schema. The receiving application uses the parser again to verify that the received Dictionary

Schema is a valid one and constructs a parse tree that helps to create and verify the

Dictionary Contents file.

Figure 1.2:  Parse tree structure at top and its leftmost child; right sibling representation at bottom
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The parse tree is a memory-resident data structure that is constructed from the schema

definition. The tree is implemented as a �leftmost child, right sibling� data structure in which

the descendants of a node are represented as a linked list of nodes ordered from leftmost child

to rightmost child. A node has two associated linked lists: a siblings list and a descendants

list. Figure 1.2 shows an example parse tree and the list structure used to instantiate that tree.

The parse tree is used during schema verification to facilitate certain necessary. For

example, no two tables may have the same name within the same schema, and no two

columns within the same table may have the same name. When a name is encountered, it is

inserted into the parse tree and checked for uniqueness at that time. An additional check is

performed on the name to ensure that the columns named in a foreign key reference are

compatible between the referencing and referenced tables. The parse tree contains sufficient

information to make such checks and is organized so that the checks can be performed

efficiently.

The structure of the Schema Language is such that the maximum depth of the parse

tree is four levels. Furthermore, at each level, the nodes are of a specific type. The four types,

in order of increasing depth in the parse tree, are catalog, schema, table, and column. For

entry level SQL-92, the catalog and schema nodes are not really needed since only one of

each can exist. A single schema node could be used as the root of the parse tree. We chose the

four-level tree implementation to make it easier to extend to higher levels of SQL-92

conformance (which allows multiple schemas and catalogs).

1.2.2  Dictionary Contents

The second part of the Data Dictionary is the Dictionary Contents. The Dictionary

Contents comprise the information about the actual data stream that can be used to construct

a database describing the static information about the sensors for this data transfer. This is the

component that contains particular values for the description of each sensor (e.g., sensor one

is at 122.23 deg longitude, 47.21 deg latitude, and measures rainfall in inches). We define a
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Contents Language and associated parser to facilitate verification that the schema contents

are compatible with the schema into which they will be placed. A Contents Parser recognizes

the language used to describe the contents of the Data Dictionary. The language is designed

to allow specification of the table and columns into which a set of data tuples will be

inserted.

The contents language is fairly simple. A data dictionary file consists of a series of

table entries. Each table entry is of the following form:

TABLE <table name>
COLUMN (<column name 1>, ... , <column name n>)
<data for column name 1>, ... , <data for column name n> ;
... one tuple for each row to be inserted into the table
<data for column name 1>, ... , <data for column name n> ;

The parser ensures this format and ensures that the type of data supplied in each tuple

matches the data type declared for its corresponding column.

An abbreviated version of the contents file used with the transmitter described in

Chapter 2 is shown in Appendix F . Its associated schema file is shown in Appendix E.

On the sending end of a data transfer, the Contents Parser helps to verify that the

contents file supplied by a data provider is compatible with the Dictionary Schema in use. On

the receiving end, the Contents Parser helps to verify that the data in the contents file are

compatible with the schema during SQL command generation.

1.2.3  Data Transfer

The overall architecture of our system for self-describing data transfer is shown in

Figure 1.3. This structure is independent of the actual data stream involved. The data transfer

is a serialized stream divided into frames. The first frame of a transfer contains the Dictionary

Schema. The second frame contains the Dictionary Contents. Subsequent frames contain the

most recently available set of data from the data source. The implementation of a self-

describing data transfer takes the form of a transmitter and a receiver.
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Figure 1.3:  An overview of the structure of our system for self-describing data transfers.

1.2.4  Transmitter

Figure 1.4 shows the components necessary to construct and transmit a stream of self-

describing data. The SDD transmitter verifies the compliance of the schema using the

Schema Parser, which creates a parse tree as a byproduct of the compliance check. The

Contents Parser then uses this parse tree to verify that the contents comply with the schema.

If both the schema and the contents are in compliance, they are serialized in the following

order: (1) schema, (2) contents, and (3) the actual sensor data. Transfer of the dictionary and

data between computer systems is accomplished by encoding the data according to the Basic

Encoding Rules (BER) defined for the ASN.1 standard. As a block of data is received, it is

encoded and sent to all clients via the redistributor methodology detailed in [15]. In our

application, the data are a stream of bytes, and the information is extracted with algorithms



13

specified in the Data Dictionary. This mechanism allows for a very general transfer that is

easy to encode but that requires the transfer recipient to devote programming effort to data

extraction.

Figure 1.4:  Self-describing data transmitter

BER encoding of the self-describing data stream involves three types: data, schema,

and contents. Each of these types is encoded according to the BER standard (ISO 8825-1)

[18] with a type, length, and value.



14

We use the ASN.1 �Application� class with the �primitive� encoding. Tag numbers 1,

2, and 3 denote schema, contents, and data, respectively. Our identifiers are therefore

encodable in one octet. We encode the �schema� and �contents� types as IA5 strings, and the

�data� type is unchanged during encoding. An ASN.1 type declaration of our types is as

follows:

DictionarySchema ::= [APPLICATION 1] IA5String
DictionaryContents ::= [APPLICATION 2] IA5String
Data ::= [APPLICATION 3] OCTET STRING

The tag number must be unique across the family of protocols using these three data

types. For example, if this system was used with the NTCIP family of protocols, the NTCIP

standards document would need to dedicate three types to an SDD transfer facility.

The serializer in Figure 1.4 sends a type, length, and value to the BER Encoder. The

BER Encoder encodes these values as the appropriate header, length bytes, and contents bytes

according to the ASN.1 definition above.

1.2.5 SDD Receiver

The SDD Receiver is a client application that converts data from the data transfer

stream format back to three data sets: schema, contents, and data. The structure of the

receiver, as shown in Figure 1.5, is parallel to that of the transmitter in Figure 1.4. The BER

Decoder takes an SDD data stream as an input, and BER decodes the data stream and

provides a decoded serial data stream that has the structure described in Figure 1.6. The

bottom portion of Figure 1.6 is the structure for each of the frames (Scheme, Contents, and

Data) in the top part of the figure. Each frame contains both a BER encoded serial number

and the data appropriate for the frame. The serial number is a 17-character timestamp with

the format �yyyymmddhhmmssmmm� (a four-digit year designation, followed by a two-digit

month, a two-digit date, a two-digit hour, a two-digit minute, a two-digit second, and a three-

digit millisecond). The serial number is used to maintain state and to relate meta-data to data.

The specific relationships between the serial numbers and the individual data types are that
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(1) Contents and Data must have the same serial numbers and (2) the Contents/Data serial

numbers must be greater-than-or-equal-to the Schema serial numbers. The second BER

packet contains the SDD data type packet, which contains either meta-data (Schema,

Contents, and Extractor) or binary data. The BER Type Demultiplexor receives a serial data

stream from the BER Decoder, and it uses the BER type field to distribute the schema and

contents to the appropriate parser. The parser components of the receiver are identical to

those of the transmitter. The schema component is sent to a Schema Parser that verifies SQL-

92 compliance and creates a parse tree for use by the Contents Parser. The contents are sent

to the Contents Parser, which verifies the contents against the schema. The outputs of these

two parsers are the verified schema and contents used to describe the dynamic sensor data.

Figure 1.5:  The detailed structure of the SDD Receiver application
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With the arrival of the data dictionary schema, data dictionary contents, and the sensor data, a

self-describing data transfer is complete.

Figure 1.6:  Structure of our serialized data stream for self-describing data transfers

The practicality of this paradigm is demonstrated in the next section, which uses an

ITS example.

1.3  ITS EXAMPLE

The Washington State Department of Transportation (WSDOT) operates a Traffic

Management System (TMS) to collect data from traffic sensors in the central Puget Sound

region, and these TMS traffic data are the focus for this ITS application of SDD. The data

from the TMS consist of three parts: (1) sensor data, which represent measures of traffic

conditions (e.g., speed, flow, occupancy), (2) information about the location and type of each

sensor (e.g., mile marker, latitude, longitude, calibration), and (3) lists of presently available

sensors. The sensor data come from inductance loop detectors placed at approximately 3000

locations in the Seattle metropolitan area, and the list of sensors/detectors presently available

changes slowly with time (e.g., every few hours). This dynamic list of available sensors

makes up the dynamic component of the data dictionary contents. The name, location,

measurement type, and other information make up the static component of the data
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 Figure 1.7 provides details about our �tms2sdd� application, which converts legacy

TMS data to our self-describing transfer format. The application can be divided into a

�legacy� component and a �standard� component. The legacy component is dependent on the

specific data source; the standard component does not change from one source to another. As

Figure 1.7:  The structure of our example application for self-describing data transfers.dictionary contents.
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in the generic transmitter case, the self-describing Dictionary Contents file is verified against

the Dictionary Schema by the standard component of tms2sdd. The schema is verified by the

Schema Parser, which constructs a memory-resident parse tree that is used by the Contents

Parser during the process of parsing and verifying the Dictionary Contents file. If verification

of both files succeeds, they are transmitted to the BER Encoder.

Operationally, when the TMS application is started, a block of meta-data is retrieved

from the TMS as an ITS Frame (as shown at the top of Figure 1.7). The meta-data block

received from the TMS Data Stream represents that part of the Dictionary Contents that is

subject to relatively frequent change. To construct a complete Dictionary Contents file, the

tms2ddc function combines the contents of a Static Data File(s) with the information in the

meta-data block to construct a complete Dictionary Contents File. The Data Dictionary is

then transmitted in two parts: the Dictionary Schema and the Dictionary Contents.

In this example, the Data Dictionary embodies the notion of state, in that the sensor

data stream has an unambiguous interpretation once the Data Dictionary is present and is

otherwise meaningless. Whenever a block of meta-data is received from the TMS Data

Source indicating that a change in the number, type, or availability of loop detectors has taken

place, a new Data Dictionary is created. The transmission of this new Data Dictionary signals

the end of one SDD transfer and the beginning of another (or in other words, a change of

state). Transfer of the Data Dictionary occurs when a client first connects and subsequently

whenever a block of meta-data is received in the TMS data stream. Once the Data Dictionary

has been sent to a client, the actual data are transmitted as they become available (in our

application, a new block of sensor data arrives every twenty seconds).

In our implementation, we have added an SQL generator, as shown at the top of

Figure 1.5. The SQL Generator creates a series of SQL INSERT commands from the

Dictionary Schema and Dictionary Contents. Each data tuple in the contents file will be

represented by an INSERT statement in the SQL output file. The commands, when used as

input to an SQL database engine, will create and fill a database that instantiates the Data
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Dictionary. We include this step as a practical matter for the engineering users of the SDD

paradigm, so that the results of an SDD transfer are a data base with which an engineer can

interact and a binary stream of dynamic sensor data. The SDD methodology described here is

being deployed for ITS traveler information applications in the Seattle metropolitan area.

Information service providers can connect to the regional ITS backbone using one receiver

and obtain a variety of data types.
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2.  Self-Describing Data Transmitter Implementation

This chapter explains in detail the implementation of the self-describing data transfer

system discussed in Chapter 1, Section 1.3. The intent of this chapter is to provide sufficient

detail for an experienced programmer to construct an implementation of the self-describing

data protocol. Our implementation uses a Generic Redistributor developed by the UW ITS

Research group to handle transport over a network and client connection details. We have

modified our Generic Redistributor to implement the self-describing data transfer protocol as

a data source. Though we have used our Generic Redistributor to implement the self-

describing data tranfer protocol, the Generic Redistributor is not itself an integral part of that

protocol.

The following discussion includes references to specific functions defined in the

implementaion.

2.1  GENERIC REDISTRIBUTOR

The Generic Redistributor is an application that receives input from a single source

and redistributes that input to a set of clients. It consists of three processes:

1. an Input Buffer,

2. a Connection Daemon, and

3. an Output Multiplexor.

The Input Buffer manages incoming communications. The Connection Daemon

manages connection requests from clients. The Output Multiplexor manages redistribution to

the set of clients. It may cache certain items (such as the legacy Data Dictionary) to be

transmitted to newly connected clients.

The data units handled by the Generic Redistributor are ITS frames, which consist of

a type header and a length value, followed by a number of contents bytes equal to the length

value. The redistributor uses the type associated with an ITS frame to determine what to do



22

with an incoming frame. The types DATA and DICTIONARY are of particular concern to this

discussion; the Generic Redistributor caches the most recently received DICTIONARY frame

and transmits it to any newly connected client and simply passes DATA frames on to the

current set of clients without caching them.

2.2  SDD TRANSMITTER

The SDD transmitter converts a legacy data stream into a self-describing data stream

and distributes it over a network to a list of clients. We based our implementation on the

Generic Redistributor described in Section 2.1. This section focuses on the changes that were

made to the Generic Redistributor to convert it into an SDD transmitter.

The functions of an SDD transmitter can be divided into two logical sections: (1) the

core SDD section and (2) the legacy to SDD conversion section. The core SDD section

includes functions that must be part of any SDD transmitter, while the legacy to SDD

conversion section includes functions that must be modified to suit a specific data source.

The SDD transmitter described here was constructed by modifying the Generic

Redistributor described in Section 2.1. The required modifications alter the Output

Multiplexor element of the Generic Redistributor in two ways:

1. An incoming legacy dictionary is handled by a function that is responsible

(1) for converting the incoming legacy dictionary (contained in an ITS

frame of type ITS_T_DICTIONARY) into an outgoing schema and

contents and (2) for packaging the schema and contents into BER encoded

frames. The Generic Redistributor then packs the BER encoded schema

and contents into ITS frames of type ITS_T_SCHEMA and

ITS_T_CONTENTS. The schema and contents frames are cached and sent

to any newly connected client before any data are sent to that client.

2. The contents of an incoming data frame (an ITS frame of type

ITS_T_DATA) are BER encoded and then re-packed into an ITS frame of
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type ITS_T_DATA and finally distributed to clients by the Output

Multiplexor.

Conversion from legacy dictionary to SDD dictionary involves elements of both the

core SDD and legacy to SDD sections mentioned above and described in detail below.

2.2.1  Core SDD

The core SDD consists of a set of (1) parsers that recognize the schema and contents

languages and (2) BER encoding routines that encode schema, contents, and data. The

properties of each of these are discussed in the following sections.

2.2.1.1  Schema Parser

The Schema Parser can be used by either a transmitter or receiver of self-describing

data. The functions performed by the Schema Parser include the following:

1. verification that the input schema is part of the SDD Schema Language

2. verification that the semantic constraints of the Schema Language are met

3. construction of a parse tree for use internally by the Schema Parser and

externally by the Contents Parser during verification of the schema and

contents.

The SDD Schema Language accepted by the Schema Parser is a subset of entry level

SQL-92 that allows creation of schemas and tables but lacks query capabilities and other

aspects of the complete SQL language. The subset is demonstrably sufficient to construct any

legal SQL relation schema and to generate any relation on that schema. The yacc (a LALR

parser) grammar definition for the Schema Language is found in Appendix A, and the flex

scanner definition is found in Appendix B.

A parse tree is constructed by the schema parser during processing of the schema file.

An illustration of an example parse tree is shown in Figure 1.2. The parse tree has a

maximum depth of four levels because of the nature of the Schema Language. At each level

of the tree, all nodes are of one type. The root node is a catalog node, the children of the
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catalog node are schema nodes, the children of schema nodes are table nodes, and the

children of table nodes are column nodes. Since column nodes can have no descendants, the

maximum depth of the tree is limited to four levels. Each node type provides auxiliary

storage for information about the specific entity represented by the node. Because that

information is different for each node type, the auxiliary data structures are node type

specific.

Construction of the parse tree is controlled by the Schema Parser. Appropriate calls to

tree construction routines are placed in the yacc specification so that tree nodes are added or

updated when the needed information has been recognized by the parser. The actions taken

when each of the four node types is recognized are described below. Because the data

structures used are somewhat complex, the type definitions are included here to aid in the

discussion. The basic parse tree node type is as follows:

typedef struct symbol_node { /* generic tree node */
  char ID[MAX_NAME_LENGTH];
  NodeClass class;     /* enumerated, one of CAT, SCH, TAB, COL */
  NodeInfoType node_data;
  symbol_node_t left_Child;
  symbol_node_t right_Sibling;
} symbol_node;

The structure includes fields for a name, a node class (one of CAT, SCH, TAB, or

COL), an auxiliary structure to contain information relevant to the particular node class, and

list headers for children and siblings that are used to implement the leftmost-child, right-

sibling tree structure that represents the parse tree. NodeInfoType is a union of structure types

catalogInformation, schemaInformaion, tableInformation and ColumnInfo. The structures are

customized to contain the data relevant to each of the possible node types.

2.2.1.2  Parse Tree Structure

The parse tree is a general tree implemented with a leftmost-child, right-sibling linked

list data structure. Each node has pointers to two other tree nodes. One points to the leftmost

child of the node, the other points to the node�s right sibling. Given this representation, the
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descendants of a node are found by following first the leftmost-child pointer and then the

right-sibling pointer of that child until no more siblings of the child are found. This data

structure allows an arbitrary number of children of any node but only requires space

proportional to the actual number of children of the node.

A set of tree construction and traversal routines are defined to facilitate construction

and searching of the parse tree. They include Create_root(), Find_node(), Insert_node(),

Delete_node(), Update_node(), Preorder(), Add_unresolved_node(),

Check_unresolved_node(), and ClearUseFlags(). These routines allow for insertion to,

deletion from, and searching and updating of the parse tree and are used during construction

of the parse tree and verification of required semantics.

For example, a foreign key (a list of columns in a different table that represent a key

to that table) can be defined before all columns involved (or even the foreign table itself)

have been defined. A check of unresolved names is performed after the parse has completed

to verify that this semantic requirement is met.

2.2.1.3  Parse Tree Node Information Structures

In this section, the information structures used with each of the parse tree node types

are described.

The catalogInformation structure used with a Catalog node is defined as follows:

typedef struct cat_info {
  char attribute[16];
} catalogInformation;

Entry level SQL-92 does not allow user-specified catalogs. A default catalog is placed

into the parse tree before any other parsing actions take place. The default catalog node has a

name and no other attributes. Expansion of the Schema Language to include higher level

compliance to SQL-92 must allow for multiple catalogs. Presently, no information is stored in

the catalogInformation structure.

The schemaInformation structure used with a Schema node is defined as follows:



26

typedef struct schema_info {
  int count;
  char attribute;
} schemaInformation;

Entry level SQL-92 does not allow user-specified schema names. A default schema

node is inserted into the parse tree before parsing begins, immediately after creation of the

default catalog node. Expansion of the Schema Language to higher-level compliance with

SQL-92 must allow for user-specified schemas. Presently, no information is stored in the

schemaInformation structure.

The tableInformation structure definition is

typedef struct table_info {
  queue_t primary_key; /* list of columns that constitute the primary key
*/
  queue_t foreign_key; /* list of ForeignKeyInfo records */
  queue_t unique; /* list of lists of columns in UNIQUE constraints */
} tableInformation;

A new table node is inserted into the parse tree when a table name has been

recognized. Additional attributes to a table node include a list of columns that constitute the

table�s primary key, a list of foreign keys defined in the table, and a list of unique

specifications for the table. Each of these is added to the tableInformation structure as the

information becomes available during parsing.

Only one primary key can be defined for a table. It is represented as a list of column

names.

A table may contain several foreign key definitions. They are represented by a list of

records of type ForeignKeyInfo, defined as follows:

typedef struct f_key_info {
  queue_t local_cols;
  queue_t foreign_cols;
} ForeignKeyInfo;

The columns local to the table are contained in the list �local_cols,� and their

definitions must match those of the corresponding columns in the list �foreign_cols.�
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Verification of that semantic requirement is performed by the function

CheckTableConstraints().

A table may contain several �UNIQUE� constraints. A unique constraint requires that

a tuple of entries into the constrained columns is unique within the table. Columns referenced

by a foreign key in a different table must be either declared as a unique constraint or as a

primary key. Each unique constraint is represented by a list of column names, and the

UNIQUE list is a list of unique constraints. The function CheckTableConstraints() verifies

that the foreign columns of any foreign key definition are either a primary key or are

constrained to be unique.

The ColumnInfo type is defined as follows:

typedef struct column_information {
  DataTypes datatype;
  data_type_info dataTypeInfo;
  char defaults[5];
  char constraint[32];
  int offset;        /* not used */
  int primary_key;        /* 1 if column is primary key, 0 otherwise */
  int InUse;         /* flag to avoid duplicate columns in contents lang */
} columnInfo;

A new column node is added to the parse tree when a column definition is recognized

during parsing. At that time, uniqueness of the name within its table is checked. Additional

information about the column includes a data type specification, a default value, and possible

column constraints.

The information needed for a column�s data type specification is dependent on the

actual data type. The dataTypeInfo field is a union type that allows the information to be

customized to the specific data type of the column. The relevant type declarations are shown

below. The types are assembled into a union of structures specific to the basic data types

described below:

typedef union d_type_info {          /* basic datatypes */
  StringTypeInfo StringType;
  numericTypeInfo numericType;
  datetimeTypeInfo datetimeType;
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  intervalTypeInfo intervalType;
} data_type_info;

String types are represented by the StringTypeInfo structure:

typedef struct str_type {
  int ConstantLength;   /* 0 for variable length, 1 for constant length */
  int length;           /* the max length of the string */
} StringTypeInfo;

Entry level SQL-92 does not allow variable length strings, so the ConstantLength

field is not really needed. It is included to ease the task of expanding the Schema Language to

higher levels of compliance.

Numeric types are represented by the numericTypeInfo structure:

typedef struct numeric_type {
  NumericTypes datatype;
  int precision;    /* precision >= scale */
  int scale;        /* default scale is 0 */
} numericTypeInfo;

The allowable types, specified in the enumerated type NumericTypes are numeric,

decimal, integer, smallint, float, real, and double precision. The scale and precision fields are

relevant only to types numeric, decimal, float, real, and double precision. The precision for

real and double precision is implementation defined; the precision for numeric, decimal, and

float may be specified by the user.

Datetime and interval types are not allowed in entry level SQL-92, but the definitions

are included to ease the task of expanding the Schema Language to higher compliance levels:

typedef struct datetime_type {
  DTTypes datatype;
  int precision;
  char timezone[16];
} datetimeTypeInfo;

typedef struct interval_type {
  IntervalFieldTypes startfield;
  int startprecision;
  IntervalFieldTypes endfield;
  int end_ld_prec;
  int end_sec_prec;
} intervalTypeInfo;
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In addition to type information, a column could be the sole element of the primary key

for a table. If so, that fact is indicated by setting the primary_key flag to TRUE. The

information is also placed in the primary_key list for the table containing the column.

The only allowable SDD Schema Language default value is NULL, and if that is

defined to be the default value for the column, the defaults field is set to contain the string

�NULL.�

Allowable column constraints are stored in the constraint field. Allowable constraints

include NOT NULL and UNIQUE. If a column is declared UNIQUE, it is added to the list of

UNIQUE column groupings for the table of which it is a part as a single-column UNIQUE

specification.

2.2.1.4  Semantic Checks

When the end of the input schema is reached, the parser performs semantic checks

before returning. The first semantic check verifies that all names encountered during parsing

have been defined. The check is performed by the routine Check_unresolved_node(). During

parsing, a list of undefined names is maintained, and if it is non-empty at the end of parsing,

its contents are checked by searching the parse tree for each previously undefined name. If all

names are found, all is well; otherwise, an error has been detected, and the parser returns with

an indication of failure.

If the unresolved name check succeeds, then a check of table constraints is performed.

The check verifies that any foreign key declarations are valid by verifying that the type

defined for each of the corresponding referencing and referenced columns matches and that

the foreign key is either a primary key in the referenced table or the set of columns has been

declared UNIQUE within that table. These checks are performed by the function

CheckTableConstraints(), which calls various auxilliary functions internal to the file, tree.c.

After the semantic checks have been performed, the parser returns either failure or a

pointer to the parse tree that it has constructed.
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2.2.1.5  Contents Parser

The purpose of the Contents Parser is to verify the syntax and semantics of the

contents file by verifying that the tables and columns referenced in the contents file are

defined in the schema and that the types of each data tuple present are compatible with the

table and columns into which it is to be placed. The Contents Parser makes use of the parse

tree constructed by the Schema Parser to perform the semantic verifications and to ensure

that the list of columns into which a set of tuples will be inserted does not contain the same

column name more than once (indicated by the �InUse� flag from the columnInfo structure).

The Contents Language is a simple language that allows specification of both a table

name and a list of columns from that table into which a series of tuples will be inserted. The

table must exist in the SDD schema, and the listed columns must exist in that table.

Each member of each of the tuples provided for insertion into a named table is

checked for type compatibility with the destination column. The parse tree generated by the

Schema Parser is used to aid this verification.

2.2.1.6  BER Encoding

Self-describing data are encoded with the Basic Encoding Rules (BER) [18] defined

for the Abstract Syntax Notation One standard (ASN.1) [14]. We use this standard to help

minimize machine dependency. We chose to hand craft a set of encoding routines because the

encoding of our ASN.1 types is relatively straightforward and it would avoid requiring that an

ASN.1 compiler be available.

We define four application specific ASN.1 types at present. They are schema,

contents, data, and serial number. Soon to be added will be Java byte code (for the extractor

application).

BER encoding is done by two routines: BEREncodeFileSN() and

BEREncodeBufferSN(). These encode the contents of a file or memory buffer as one of the

BER types utilized by the SDD protocol. The routines place the encoded input file or buffer

into an output buffer and allocate space for that buffer if necessary. If the output buffer has
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already been allocated and is large enough, it is used; if not, it is reallocated with sufficient

size. The arguments to each function are an input stream or buffer, an output buffer, the

allocated size of the output buffer, the BER type to be encoded, a length in bytes of the buffer

or file to be encoded, and a serial number. The functions encode first the serial number and

then the file or buffer, placing both BER encodings into the same output buffer. The serial

number is encoded as an IA5String, since it is a character representation of an integer that can

be interpreted as a GMT date time with millisecond resolution. Encoding as an IA5String is

done by the internal function IA5Encode(), which takes a character argument and encodes it

as its IA5 representation. Currently, we use ascii and should revise the function to be in

compliance with the IA5 standard. The BER length octets are constructed by the internal

function EncodeLengthHeader(), which only deals with the definite form of the length octets

as defined in the BER standard [18].

2.2.1.7  Client Connection Maintenance

To provide a self-describing data stream requires a client management system. That

system handles connection to the source of data, requests for connection from clients,

distribution of schema and contents to newly connected clients, and distribution of data to

each client.

A method for managing client connection details is not specified as part of our self-

describing data protocol. Our sample implementation makes use of the client connection

management provided by the Generic Redistributor described in Section 2.1.

2.2.2  Legacy to SDD Conversion

The Legacy to SDD Conversion portion of an SDD transmitter converts information

about the data stream (the legacy dictionary) into a format that is compatible with the self-

describing data protocol. Its exact structure must depend on the conversion task that will be

performed. The following description applies to the TMS loops data of our example.
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2.2.2.1  Schema Creation

To convert the legacy TMS data into a self-describing data format requires

construction of a schema for the available information about the data stream. That only needs

to be done once (but revisions are required if there are changes to the data items available for

a class of sensors). The schema should adhere to certain guidelines, as described below.

For each distinct data reporting element (sensor), a mapping between that unit�s id

(which may be a multiple component primary key if needed) and the location within a data

block of the data reported by that element must be present in the schema. For easier

construction of a data extractor, that mapping should be contained in a single table whenever

practicable.

If data will be extracted from the data stream and stored in the database as they arrive,

the schema should contain definitions of tables to contain the extracted data. See Appendix E

for an example schema. When present, the tables will likely be used by a data extraction

routine supplied in the algorithms table (and optionally as an executable Java application).

Even if data are not inserted into the tables by an extraction routine, the data table definitions

provide useful documentation of the information present in the data for each sensor type.

2.2.2.2  Contents File Creation

The legacy dictionary must be used to create a new version of the contents file

whenever a new dictionary is received. The function CreateContentsFile() converts an

incoming legacy Data Dictionary into a contents file. It makes use of several static files that

contain information not present in the legacy Data Dictionary. This additional information

located in flat files is needed for a complete description of the data stream. These files

include a file containing a description of the algorithms needed to interpret the packed data

stream format (the AlgorithmFile), a file containing information about the measurement

systems used for position information (the MeasuresFile), and a file containing information
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about the loop sensors that is not present in the legacy Data Dictionary (the

CabinetInformation file).

Because the routine that creates the contents file from the legacy dictionary and

various static files depends on the schema definition, it must be changed if the schema

definition changes.

Figure 2.1:  A new contents file is generated when an incoming dictionary frame is different than the one
currently cached
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A new contents file must be generated whenever an incoming dictionary differs from

the one in current use. This is accomplished by the function labeled �tms2ddc� in Figure 2.1.

An incoming legacy dictionary might not be different from the one currently cached by the

transmitter if it was sent by an upstream server after a re-start. Since contents file generation

and transmission can require significant resources, we compare an incoming dictionary with

the currently cached version to determine if it is a real revision and not merely a re-

transmission from an upstream server and will only create a new contents file in the former

case. This prevents constructing a new contents file and subsequent parsing and transmission

of the schema and the contents to all connected clients if such activity is not necessary. Not

only does this save transmission and processing costs, it also avoids requiring the recipient to

generate a new database schema unless there is a real change to the Dictionary Contents.

2.2.3  Creating a Specific Transmitter

To create a transmitter application for a specific set of data requires the legacy portion

of the transmitter to be modified. The steps required to customize a transmitter to a specific

data stream are the subject of this section.

2.2.3.1  Define Schema

To be self-describing, a data set must include a Data Dictionary in the form of an SQL

schema and the associated contents. The schema should include all available information

about the data. To ease the receiver�s task of interpreting the data, certain conventions should

be followed. Two important conventions are the inclusion of a table in the schema that maps

from sensor ID to the location of that sensor�s actual data (the sensor-to-offset table) and the

inclusion of an algorithm for interpreting the data, given the sensor�s type and the location of

its data.

The sensor-to-offset table may include other information but should at least include a

unique key to each sensor and an offset into a block of data where that sensor�s data can be

found. In the present example implementation, data from each sensor are reported every 20
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seconds as a binary stream. The offset into that block of data is given for each sensor by the

legacy dictionary. The schema includes a table that holds the required mapping:

CREATE TABLE LOOPS
(LOOP_ID     CHAR(16)  NOT NULL PRIMARY KEY,
 CABINET_ID  CHAR(7)   NOT NULL,
 METERED     CHAR(4)   NOT NULL,
 RD_TYPE     CHAR(30)  NOT NULL,
 DIRECTION   CHAR(12)  NOT NULL,
 LANE_TYPE   CHAR(20)  NOT NULL,
 LANE_NUM    SMALLINT,
 SENSOR_TYPE CHAR(12)  NOT NULL,
 DATA_OFFSET INTEGER   NOT NULL)

In this situation, the LOOP_ID field is sufficient as a primary key. If, for example, a

loop could provide information described by several different sensor types, then the

SENSOR_TYPE field would be needed in the primary key as well. The DATA_OFFSET

field contains a byte offset into a buffer of binary data from which a number of bytes that

depend on the sensor type are processed by the extraction algorithm. The extraction algorithm

must �know� the correct number of bytes to process for each sensor type.

The algorithms used to extract data into a usable form from the data stream should be

documented in a table. Since entry level SQL-92 does not provide a �text� data type, our

example application defines a table with 3 columns: line number, file name, and text:

CREATE TABLE ALG_DESCRIPT � Algorithms Used To Extract Data From
                          � The Real Data Stream.
(FILE_NAME CHAR(20) NOT NULL,
 LINE_NUMBER  INTEGER  NOT NULL,
 LINE_TEXT    CHAR(128),
 PRIMARY KEY (MEASURE_TYPE, LINE_NUMBER))

The contents of each file of the algorithm description can be extracted from this table

by selecting LINE_NUMBER and LINE_TEXT for a given FILE_NAME, ordered by

LINE_NUMBER. We recommend providing the algorithm description in the form of a Java

program that performs the data extraction task. Since each Java class must be defined in its

own file, the algorithms table separates information by file name. The algorithm description

takes the form of textual Java code, and the recipient can compile the Java text to produce an
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executable data extractor. If the algorithm description takes some other form, then a custom

data extraction routine must be constructed according to the specifications contained in the

algorithms table.

2.2.3.2  Construct Contents

The contents file contains the information to be placed into the database according to

the Dictionary Schema. In some instances the contents may not change with time or may

change very slowly. In other instances the contents may change dynamically within a

relatively short (hours to weeks) period. A dynamic legacy dictionary requires some

automatic way to generate an update, while a static dictionary may only need to be defined

once.

The TMS data of our example are described by a dynamic legacy dictionary. A

dictionary can arrive in the data stream at any time. The TMS SDD transmitter constructs a

new contents file from information contained in the legacy dictionary and several static data

files whenever a new legacy dictionary arrives. To construct a new transmitter for a data

transfer that has a dynamic dictionary, a routine that does the necessary legacy-to-SDD

conversion must be created and added to the transmitter. In our TMS example, the function

CreateContentsFile() performs the required conversion.

If the legacy dictionary is static, the situation is considerably simplified. A contents

file must be constructed before transfer can begin, but no provision for dynamic change to the

contents file is necessary. The file can be generated by hand if it is small, or suitable tools can

used to construct the file if it is large. Once constructed, the SDD transmitter can be modified

to transmit the contents file when a new client is connected.

2.2.3.3  Construct Data Extractor

Self-describing data require the description to include information needed to interpret

the data stream. Data streams are often transmitted in packed binary form for bandwidth

reasons. If that is the case, then the information must include a description of how many data
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are present in the record for each sensor and the meaning of the individual bits in those data.

An ideal way to convey such information is a program that accomplishes the required

extraction. The wide availability of Java, together with its portability, make it well suited to

the task of supplying a data extraction algorithm.

To construct a data extraction algorithm obviously requires knowledge of the sensor

data format. If the algorithm description takes the form of Java code, it should be liberally

commented to make that format clear to the reader of the code.

To obtain the mapping between sensor ID and offset, the extractor must have

knowledge of the table structure of the schema. Specifically, it must know the name of the

table that contains the required mapping. Since the extractor is constructed by the providers

of the data, that knowledge should be available. The extractor could be constructed to parse

the contents file and obtain the desired mapping from that source rather than performing a

query to a database instantiation of the Data Dictionary.

If the data extractor is configured to generate SQL statements that place the extracted

data into a database table, the extractor must have knowledge of the names of the tables and

columns devoted to storing the sensor data.

2.3  SDD RECEIVER

Implementation of an SDD receiver makes use of many of the components of the

SDD transmitter. It uses the same parsers for schema and contents as does the transmitter, and

the BER encoding routines of the transmitter are the inverses of the BER decoders needed by

the receiver. The receiver has the task of generating SQL commands that instantiate the Data

Dictionary. That function is easily added to the Contents Parser. In our sample

implementation, both parsers are the same, and generation of SQL output is controlled by the

setting of an internal flag variable.

Extraction of data to a usable form from the incoming data stream is a desirable

property of an SDD receiver. The wide availablilty of the Java programming language,
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together with its machine independence, make it a prime candidate for use in the extraction

problem. Using the methods described in Section 2.2.3, a provider of self-describing data can

construct an extractor with Java and include the code in the Data Dictionary. Those methods

require that the recipient extract the Java code and place it in operation. We are planning to

extend the SDD types so that an extractor can be transmitted in Java byte code form, allowing

a receiver (if implemented in Java) to automatically use the extractor to process incoming

data.
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3.  Conclusions

In this report we present a methodology that provides a framework to create, encode,

and decode a self-describing data stream. Clients of these data streams can interpret the

detailed information in the data transfer with limited a priori information. We demonstrate

that a self-describing data transfer be completed using only

1. existing data description language standards,

2. parsers to enforce language compliance,

3. a simple content language that flows out of the data description language,

and

4. architecture neutral encoders and decoders based on ASN.1.

We demonstrate the use of the SDD paradigm with data from a legacy traffic

management center, and in Chapter 2 we provide a detailed technical description of its

implementation. This SDD paradigm has the potential to enhance the NTCIP family of

protocols under development to support ITS deployment.

The complete source code for our implementation can be obtained by ftp from ftp://

ftp.its.washington.edu/pub/mdi/SDD/v2.0.0/sdd2.0.0b6.zip, and additional information is

available from http://www.its.washington.edu/bbone.
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Appendix A:  Schema Parser

This appendix contains the yacc specification of the language recognized by the Schema

Parser. The action routines have been removed for clarity.

%token BIT
%token CHAR
%token CHARACTER
%token COMMA
%token CREATE
%token DATE
%token DAY
%token DEC
%token DECIMAL
%token DEFAULT
%token DELIMITED_IDENTIFIER
%token DOUBLE
%token FLOAT
%token FOREIGN
%token HOUR
%token INT
%token INTEGER
%token INTERVAL
%token KEY
%token LFT_PAREN
%token MINUTE
%token MONTH
%token NON_QUOTE_CHAR
%token NOT
%token NULL_TOKEN
%token NUMERIC
%token PERIOD
%token PRECISION
%token PRIMARY
%token QUOTE
%token REAL
%token REFERENCES
%token REGULAR_IDENTIFIER
%token RESERVED_WORD
%token RT_PAREN
%token SCHEMA
%token SECOND
%token SEMICOLON
%token SMALLINT
%token TABLE
%token TIME
%token TIMESTAMP
%token TO
%token UNDERSCORE
%token UNIQUE
%token UNSIGNED_INTEGER
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%token VARCHAR
%token VARYING
%token WITH
%token YEAR
%token ZONE

%%
data_dictionary_definition :
      SQL_schema_statement optional_semicolon
    ;

optional_semicolon : /* empty */
    | SEMICOLON
    ;

SQL_schema_statement : schema_definition ;

schema_definition : CREATE SCHEMA schema_element_list ;

schema_element_list : /* empty */
    | schema_element_list schema_element
    ;

schema_element : table_definition ;

table_definition : CREATE TABLE table_name table_element_list ;

table_name : identifier ;

qualified_table_name : qualified_name ;

qualified_name :
      identifier PERIOD identifier PERIOD identifier
    | identifier PERIOD identifier
    | identifier
    ;

identifier :
      REGULAR_IDENTIFIER
    | DELIMITED_IDENTIFIER
    ;

table_element_list : LFT_PAREN table_element table_element_list_body
RT_PAREN ;

table_element_list_body : /* empty */
    | table_element_list_body COMMA table_element
    ;

table_element :
      column_definition
    | table_constraint_definition
    ;
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column_definition :
      column_name data_type default_clause column_constraint_definition
    ;

column_name : identifier ;

data_type :
      character_string_type
    | bit_string_type
    | numeric_type
    ;

character_string_type :
      CHARACTER
    | CHARACTER LFT_PAREN length RT_PAREN
    | CHAR LFT_PAREN length RT_PAREN
    | CHAR
    ;

length : UNSIGNED_INTEGER ;

bit_string_type :
      BIT
    | BIT LFT_PAREN length RT_PAREN
    ;

numeric_type :
      exact_numeric_type
    | approximate_numeric_type
    ;

exact_numeric_type :
      NUMERIC precision_spec
    | DECIMAL precision_spec
    | DEC precision_spec
    | INTEGER
    | INT
    | SMALLINT
    ;

precision_spec : /* empty */
    | LFT_PAREN precision RT_PAREN
    | LFT_PAREN precision COMMA scale RT_PAREN
    ;

precision : UNSIGNED_INTEGER ;

scale : UNSIGNED_INTEGER ;

approximate_numeric_type :
      FLOAT
    | FLOAT LFT_PAREN precision RT_PAREN
    | REAL
    | DOUBLE PRECISION
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    ;

default_clause : /* empty */
    | DEFAULT default_option
    ;

default_option : NULL_TOKEN ;

column_constraint_definition : /* empty */
    | column_constraint_definition column_constraint
    ;

column_constraint :
      NOT NULL_TOKEN
    | UNIQUE
    | PRIMARY KEY
    ;

table_constraint_definition : table_constraint ;

table_constraint :
      unique_constraint_definition
    | referential_constraint_definition
    ;

unique_constraint_definition :
      UNIQUE LFT_PAREN unique_column_list RT_PAREN
    | PRIMARY KEY LFT_PAREN unique_column_list RT_PAREN
    ;

unique_column_list : local_column_name_list ;

column_name_list : constraint_column_name column_name_list_body ;

column_name_list_body : /* empty */
    | column_name_list_body COMMA constraint_column_name
    ;

local_column_name_list : column_name local_column_name_list_body ;

local_column_name_list_body : /* empty */
    | local_column_name_list_body COMMA constraint_column_name
    ;

constraint_column_name : column_name ;

constraint_table_name : qualified_table_name ;

referential_constraint_definition :
      FOREIGN KEY LFT_PAREN referencing_columns RT_PAREN
          references_specification
    ;

referencing_columns : local_column_name_list ;
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reference_column_list : column_name_list ;

references_specification : REFERENCES referenced_table_and_columns ;

referenced_table_and_columns :
      qualified_table_name
    | qualified_table_name LFT_PAREN reference_column_list RT_PAREN
    ;
%%
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Appendix B:  Schema Scanner

This appendix contains the flex specification of the scanner used with the Schema Parser

defined in the preceeding yacc grammar. The scanner is called by the parser, and recognizes

the tokens defined in the Schema Grammar, returning an appropriate value to the Parser.

A [Aa]
B [Bb]
C [Cc]
D [Dd]
E [Ee]
F [Ff]
G [Gg]
H [Hh]
I [Ii]
J [Jj]
K [Kk]
L [Ll]
M [Mm]
N [Nn]
O [Oo]
P [Pp]
Q [Qq]
R [Rr]
S [Ss]
T [Tt]
U [Uu]
V [Vv]
W [Ww]
X [Xx]
Y [Yy]
Z [Zz]
%%
�.� { SchemaLength += 1; return(PERIOD); }
�_� { SchemaLength += strlen(yytext); return(UNDERSCORE); }
�(� { SchemaLength += strlen(yytext); return(LFT_PAREN); }
�)� { SchemaLength += strlen(yytext); return(RT_PAREN); }
�,� { SchemaLength += strlen(yytext); return(COMMA); }
��� { SchemaLength += strlen(yytext); return(QUOTE); }
�;� { SchemaLength += strlen(yytext); return(SEMICOLON); }
� � SchemaLength += 1;
\t SchemaLength += 1;
\n { SchemaLength += 1; LineNum += 1; }
{B}{I}{T} { SchemaLength += strlen(yytext); return(BIT); }
{C}{H}{A}{R} { SchemaLength += strlen(yytext); return(CHAR); }
{C}{H}{A}{R}{A}{C}{T}{E}{R} { SchemaLength += strlen(yytext);

      return(CHARACTER); }
{C}{R}{E}{A}{T}{E} { SchemaLength += strlen(yytext); return(CREATE);}
{D}{A}{T}{E} { SchemaLength += strlen(yytext); return(DATE); }
{D}{A}{Y} { SchemaLength += strlen(yytext); return(DAY); }
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{D}{E}{C} { SchemaLength += strlen(yytext); return(DEC); }
{D}{E}{C}{I}{M}{A}{L} { SchemaLength += strlen(yytext); return(DECIMAL); }
{D}{E}{F}{A}{U}{L}{T} { SchemaLength += strlen(yytext); return(DEFAULT); }
{D}{O}{U}{B}{L}{E} { SchemaLength += strlen(yytext); return(DOUBLE); }
{F}{L}{O}{A}{T} { SchemaLength += strlen(yytext); return(FLOAT); }
{F}{O}{R}{E}{I}{G}{N} { SchemaLength += strlen(yytext); return(FOREIGN); }
{H}{O}{U}{R} { SchemaLength += strlen(yytext); return(HOUR); }
{I}{N}{T} { SchemaLength += strlen(yytext); return(INT); }
{I}{N}{T}{E}{G}{E}{R} { SchemaLength += strlen(yytext); return(INTEGER); }
{I}{N}{T}{E}{R}{V}{A}{L} { SchemaLength += strlen(yytext);
return(INTERVAL); }
{K}{E}{Y} { SchemaLength += strlen(yytext); return(KEY); }
{M}{I}{N}{U}{T}{E} { SchemaLength += strlen(yytext); return(MINUTE); }
{M}{O}{N}{T}{H} { SchemaLength += strlen(yytext); return(MONTH); }
{N}{O}{T} { SchemaLength += strlen(yytext); return(NOT); }
{N}{U}{L}{L} { SchemaLength += strlen(yytext); return(NULL_TOKEN); }
{N}{U}{M}{E}{R}{I}{C} { SchemaLength += strlen(yytext); return(NUMERIC); }
{P}{R}{E}{C}{I}{S}{I}{O}{N} { SchemaLength += strlen(yytext);

      return(PRECISION); }
{P}{R}{I}{M}{A}{R}{Y} { SchemaLength += strlen(yytext); return(PRIMARY); }
{R}{E}{A}{L} { SchemaLength += strlen(yytext); return(REAL); }
{R}{E}{F}{E}{R}{E}{N}{C}{E}{S} { SchemaLength += strlen(yytext);

 return(REFERENCES); }
{S}{C}{H}{E}{M}{A} { SchemaLength += strlen(yytext); return(SCHEMA); }
{S}{E}{C}{O}{N}{D} { SchemaLength += strlen(yytext); return(SECOND); }
{S}{M}{A}{L}{L}{I}{N}{T} { SchemaLength += strlen(yytext);
return(SMALLINT); }
{T}{A}{B}{L}{E} { SchemaLength += strlen(yytext); return(TABLE); }
{T}{I}{M}{E} { SchemaLength += strlen(yytext); return(TIME); }
{T}{I}{M}{E}{S}{T}{A}{M}{P} { SchemaLength += strlen(yytext);

      return(TIMESTAMP); }
{T}{O} { SchemaLength += strlen(yytext); return(TO); }
{U}{N}{I}{Q}{U}{E} { SchemaLength += strlen(yytext); return(UNIQUE); }
{V}{A}{R}{C}{H}{A}{R} { SchemaLength += strlen(yytext); return(VARCHAR); }
{V}{A}{R}{Y}{I}{N}{G} { SchemaLength += strlen(yytext); return(VARYING); }
{W}{I}{T}{H} { SchemaLength += strlen(yytext); return(WITH); }
{Y}{E}{A}{R} { SchemaLength += strlen(yytext); return(YEAR); }
{Z}{O}{N}{E} { SchemaLength += strlen(yytext); return(ZONE); }

{A}{B}{S}{O}{L}{U}{T}{E}                          |
{A}{C}{T}{I}{O}{N}                                |
{A}{D}{D}                                         |
{A}{L}{L}                                         |
{A}{L}{L}{O}{C}{A}{T}{E}                          |
{A}{L}{T}{E}{R}                                   |
{A}{N}{D}                                         |
{A}{N}{Y}                                         |
{A}{R}{E}                                         |
{A}{S}                                            |
{A}{S}{C}                                         |
{A}{S}{S}{E}{R}{T}{I}{O}{N}                       |
{A}{T}                                            |
{A}{U}{T}{H}{O}{R}{I}{Z}{A}{T}{I}{O}{N}           |
{A}{V}{G}                                         |
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{B}{E}{G}{I}{N}                                   |
{B}{E}{T}{W}{E}{E}{N}                             |
{B}{I}{T}_{L}{E}{N}{G}{T}{H}                      |
{B}{O}{T}{H}                                      |
{B}{Y}                                            |
{C}{A}{S}{C}{A}{D}{E}                             |
{C}{A}{S}{C}{A}{D}{E}{D}                          |
{C}{A}{S}{E}                                      |
{C}{A}{S}{T}                                      |
{C}{A}{T}{A}{L}{O}{G}                             |
{C}{H}{A}{R}_{L}{E}{N}{G}{T}{H}                   |
{C}{H}{A}{R}{A}{C}{T}{E}{R}_{L}{E}{N}{G}{T}{H}    |
{C}{H}{E}{C}{K}                                   |
{C}{L}{O}{S}{E}                                   |
{C}{O}{A}{L}{E}{S}{C}{E}                          |
{C}{O}{L}{L}{A}{T}{E}                             |
{C}{O}{L}{L}{A}{T}{I}{O}{N}                       |
{C}{O}{L}{U}{M}{N}                                |
{C}{O}{M}{M}{I}{T}                                |
{C}{O}{N}{N}{E}{C}{T}                             |
{C}{O}{N}{N}{E}{C}{T}{I}{O}{N}                    |
{C}{O}{N}{S}{T}{R}{A}{I}{N}{T}                    |
{C}{O}{N}{S}{T}{R}{A}{I}{N}{T}{S}                 |
{C}{O}{N}{T}{I}{N}{U}{E}                          |
{C}{O}{N}{V}{E}{R}{T}                             |
{C}{O}{R}{R}{E}{S}{P}{O}{N}{D}{I}{N}{G}           |
{C}{O}{U}{N}{T}                                   |
{C}{R}{O}{S}{S}                                   |
{C}{U}{R}{R}{E}{N}{T}                             |
{C}{U}{R}{R}{E}{N}{T}_{D}{A}{T}{E}                |
{C}{U}{R}{R}{E}{N}{T}_{T}{I}{M}{E}                |
{C}{U}{R}{R}{E}{N}{T}_{T}{I}{M}{E}{S}{T}{A}{M}{P} |
{C}{U}{R}{R}{E}{N}{T}_{U}{S}{E}{R}                |
{C}{U}{R}{S}{O}{R}                                |
{D}{E}{A}{L}{L}{O}{C}{A}{T}{E}                    |
{D}{E}{C}{L}{A}{R}{E}                             |
{D}{E}{F}{E}{R}{R}{A}{B}{L}{E}                    |
{D}{E}{F}{E}{R}{R}{E}{D}                          |
{D}{E}{L}{E}{T}{E}                                |
{D}{E}{S}{C}                                      |
{D}{E}{S}{C}{R}{I}{B}{E}                          |
{D}{E}{S}{C}{R}{I}{P}{T}{O}{R}                    |
{D}{I}{A}{G}{N}{O}{S}{T}{I}{C}{S}                 |
{D}{I}{S}{C}{O}{N}{N}{E}{C}{T}                    |
{D}{I}{S}{T}{I}{N}{C}{T}                          |
{D}{O}{M}{A}{I}{N}                                |
{D}{R}{O}{P}                                      |
{E}{L}{S}{E}                                      |
{E}{N}{D}                                         |
{E}{N}{D}\-{E}{X}{E}{C}                           |
{E}{S}{C}{A}{P}{E}                                |
{E}{X}{C}{E}{P}{T}                                |
{E}{X}{E}{C}{U}{T}{E}                             |
{E}{X}{I}{S}{T}{S}                                |
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{E}{X}{T}{E}{R}{N}{A}{L}                          |
{E}{X}{T}{R}{A}{C}{T}                             |
{F}{A}{L}{S}{E}                                   |
{F}{E}{T}{C}{H}                                   |
{F}{I}{R}{S}{T}                                   |
{F}{O}{R}                                         |
{F}{O}{U}{N}{D}                                   |
{F}{R}{O}{M}                                      |
{F}{U}{L}{L}                                      |
{G}{E}{T}                                         |
{G}{L}{O}{B}{A}{L}                                |
{G}{O}                                            |
{G}{O}{T}{O}                                      |
{G}{R}{A}{N}{T}                                   |
{G}{R}{O}{U}{P}                                   |
{H}{A}{V}{I}{N}{G}                                |
{I}{D}{E}{N}{T}{I}{T}{Y}                          |
{I}{M}{M}{E}{D}{I}{A}{T}{E}                       |
{I}{N}                                            |
{I}{N}{D}{I}{C}{A}{T}{O}{R}                       |
{I}{N}{I}{T}{I}{A}{L}{L}{Y}                       |
{I}{N}{N}{E}{R}                                   |
{I}{N}{P}{U}{T}                                   |
{I}{N}{S}{E}{N}{S}{I}{T}{I}{V}{E}                 |
{I}{N}{S}{E}{R}{T}                                |
{I}{N}{T}{E}{R}{S}{E}{C}{T}                       |
{I}{N}{T}{O}                                      |
{I}{S}                                            |
{I}{S}{O}{L}{A}{T}{I}{O}{N}                       |
{J}{O}{I}{N}                                      |
{L}{A}{N}{G}{U}{A}{G}{E}                          |
{L}{A}{S}{T}                                      |
{L}{E}{A}{D}{I}{N}{G}                             |
{L}{E}{F}{T}                                      |
{L}{E}{V}{E}{L}                                   |
{L}{I}{K}{E}                                      |
{L}{O}{C}{A}{L}                                   |
{L}{O}{W}{E}{R}                                   |
{M}{A}{T}{C}{H}                                   |
{M}{A}{X}                                         |
{M}{I}{N}                                         |
{M}{O}{D}{U}{L}{E}                                |
{N}{A}{M}{E}{S}                                   |
{N}{A}{T}{I}{O}{N}{A}{L}                          |
{N}{A}{T}{U}{R}{A}{L}                             |
{N}{C}{H}{A}{R}                                   |
{N}{E}{X}{T}                                      |
{N}{O}                                            |
{N}{U}{L}{L}{I}{F}                                |
{O}{C}{T}{E}{T}_{L}{E}{N}{G}{T}{H}                |
{O}{F}                                            |
{O}{N}                                            |
{O}{N}{L}{Y}                                      |
{O}{P}{E}{N}                                      |
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{O}{P}{T}{I}{O}{N}                                |
{O}{R}                                            |
{O}{R}{D}{E}{R}                                   |
{O}{U}{T}{E}{R}                                   |
{O}{U}{T}{P}{U}{T}                                |
{O}{V}{E}{R}{L}{A}{P}{S}                          |
{P}{A}{D}                                         |
{P}{A}{R}{T}{I}{A}{L}                             |
{P}{O}{S}{I}{T}{I}{O}{N}                          |
{P}{R}{E}{P}{A}{R}{E}                             |
{P}{R}{E}{S}{E}{R}{V}{E}                          |
{P}{R}{I}{O}{R}                                   |
{P}{R}{I}{V}{I}{L}{E}{G}{E}{S}                    |
{P}{R}{O}{C}{E}{D}{U}{R}{E}                       |
{P}{U}{B}{L}{I}{C}                                |
{R}{E}{A}{D}                                      |
{R}{E}{L}{A}{T}{I}{V}{E}                          |
{R}{E}{S}{T}{R}{I}{C}{T}                          |
{R}{E}{V}{O}{K}{E}                                |
{R}{I}{G}{H}{T}                                   |
{R}{O}{L}{L}{B}{A}{C}{K}                          |
{R}{O}{W}{S}                                      |
{S}{C}{R}{O}{L}{L}                                |
{S}{E}{C}{T}{I}{O}{N}                             |
{S}{E}{L}{E}{C}{T}                                |
{S}{E}{S}{S}{I}{O}{N}                             |
{S}{E}{S}{S}{I}{O}{N}_{U}{S}{E}{R}                |
{S}{E}{T}                                         |
{S}{I}{Z}{E}                                      |
{S}{O}{M}{E}                                      |
{S}{P}{A}{C}{E}                                   |
{S}{Q}{L}                                         |
{S}{Q}{L}{C}{O}{D}{E}                             |
{S}{Q}{L}{E}{R}{R}{O}{R}                          |
{S}{Q}{L}{S}{T}{A}{T}{E}                          |
{S}{U}{B}{S}{T}{R}{I}{N}{G}                       |
{S}{U}{M}                                         |
{S}{Y}{S}{T}{E}{M}_{U}{S}{E}{R}                   |
{T}{E}{M}{P}{O}{R}{A}{R}{Y}                       |
{T}{H}{E}{N}                                      |
{T}{I}{M}{E}{Z}{O}{N}{E}_{H}{O}{U}{R}             |
{T}{I}{M}{E}{Z}{O}{N}{E}_{M}{I}{N}{U}{T}{E}       |
{T}{R}{A}{I}{L}{I}{N}{G}                          |
{T}{R}{A}{N}{S}{A}{C}{T}{I}{O}{N}                 |
{T}{R}{I}{M}                                      |
{T}{R}{U}{E}                                      |
{U}{N}{I}{O}{N}                                   |
{U}{N}{K}{N}{O}{W}{N}                             |
{U}{P}{D}{A}{T}{E}                                |
{U}{P}{P}{E}{R}                                   |
{U}{S}{A}{G}{E}                                   |
{U}{S}{E}{R}                                      |
{U}{S}{I}{N}{G}                                   |
{V}{A}{L}{U}{E}                                   |
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{V}{A}{L}{U}{E}{S}                                |
{V}{I}{E}{W}                                      |
{W}{H}{E}{N}                                      |
{W}{H}{E}{N}{E}{V}{E}{R}                          |
{W}{H}{E}{R}{E}                                   |
{W}{O}{R}{K}                                      |
{W}{R}{I}{T}{E}  { SchemaLength += strlen(yytext); return(RESERVED_WORD); }

[A-Z]([A-Z0-9_]*[A-Z0-9])*  { SchemaLength += strlen(yytext);
      return(REGULAR_IDENTIFIER); }

\�([^�\n]*(\�\�)*[^�\n]*)*\�  { SchemaLength += strlen(yytext);
return(DELIMITED_IDENTIFIER); }

\-\-[^\n]*\n { SchemaLength += strlen(yytext); LineNum += 1; }
[0-9]+ { SchemaLength += strlen(yytext); return(UNSIGNED_INTEGER); }
[^�] { SchemaLength += strlen(yytext); return(NON_QUOTE_CHAR); }
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Appendix C:  Contents Parser

This appendix contains the yacc specification for the contents language.

%token CATALOG
%token SCHEMA
%token TABLE
%token COLUMN
%token LFT_PAREN
%token RT_PAREN
%token SEMICOLON
%token COMMA
%token NULL_TOKEN
%token DEFAULT
%token INTEGER_LITERAL
%token EXACT_DOUBLE_LITERAL
%token APPROXIMATE_DOUBLE_LITERAL
%token REGULAR_IDENTIFIER
%token DELIMITED_IDENTIFIER
%token CHARACTER_STRING
%start data_dictionary_file
%%
data_dictionary_file : table_list ;

table_list : /* empty */
    | table_list table_entry
    ;

table_entry : TABLE table_name column_list row_values_list ;

column_list : COLUMN LFT_PAREN column_name col_name_list RT_PAREN ;

table_name : identifier ;

column_name : identifier ;

identifier :
      REGULAR_IDENTIFIER
    | DELIMITED_IDENTIFIER
    ;

col_name_list : /* empty */
    | col_name_list COMMA column_name
    ;

row_values_list : /* empty */
    | row_values_list row_values
    ;

row_values :
      row_value SEMICOLON
    | row_value COMMA row_values
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    ;

row_value :
      NULL_TOKEN
    | DEFAULT
    | INTEGER_LITERAL
    | EXACT_DOUBLE_LITERAL
    | APPROXIMATE_DOUBLE_LITERAL
    | CHARACTER_STRING
    ;
%%



55

Appendix D:  Contents Scanner

This appendix contains the flex specification for the scanner used with the Contents Parser.

D          [0-9]
E          [eE][-+]?{D}+
Q          [�][�]
%%
�(� { ContentLength += strlen(ddftext); return(LFT_PAREN); }

�)� { ContentLength += strlen(ddftext); return(RT_PAREN); }

�,� { ContentLength += strlen(ddftext); return(COMMA); }

�;� { ContentLength += strlen(ddftext); return(SEMICOLON); }

� � ContentLength += strlen(ddftext);

\t ContentLength += strlen(ddftext);

\n { ContentLength += strlen(ddftext); LineCount += 1; }

[Nn][Uu][Ll][Ll] { ContentLength += strlen(ddftext); return(NULL_TOKEN); }

[Dd][Ee][Ff][Aa][Uu][Ll][Tt] { ContentLength += strlen(ddftext);
       return(DEFAULT); }

[Tt][Aa][Bb][Ll][Ee] { ContentLength += strlen(ddftext); return(TABLE); }

[Cc][Oo][Ll][Uu][Mm][Nn] { ContentLength += strlen(ddftext);
return(COLUMN); }

[A-Z]([A-Z0-9_]*[A-Z0-9])* { ContentLength += strlen(ddftext);
     return(REGULAR_IDENTIFIER); }

\�([^�\n]*(\�\�)*[^�\n]*)*\� { ContentLength += strlen(ddftext);
       return(DELIMITED_IDENTIFIER); }

\-\-[^\n]*\n { ContentLength += strlen(ddftext); LineCount += 1; }

[+\-]?{D}+ { ContentLength += strlen(ddftext); return(INTEGER_LITERAL); }

[+\-]?{D}+[.] { ContentLength += strlen(ddftext);
return(EXACT_DOUBLE_LITERAL); }

[+\-]?{D}+[.]{D}+ { ContentLength += strlen(ddftext);
  return(EXACT_DOUBLE_LITERAL); }

[+\-]?[.]{D}+ { ContentLength += strlen(ddftext);
return(EXACT_DOUBLE_LITERAL); }

[+\-]?{D}+{E} { ContentLength += strlen(ddftext);
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  return(APPROXIMATE_DOUBLE_LITERAL); }

[+\-]?{D}+[.]{E} { ContentLength += strlen(ddftext);
   return(APPROXIMATE_DOUBLE_LITERAL); }

[+\-]?{D}+[.]{D}+{E} { ContentLength += strlen(ddftext);
 return(APPROXIMATE_DOUBLE_LITERAL); }

[+\-]?[.]{D}+{E} { ContentLength += strlen(ddftext);
   return(APPROXIMATE_DOUBLE_LITERAL); }

([�])([^�\n]*|[�][�])*([�]) { ContentLength += strlen(ddftext);
   return(CHARACTER_STRING); }
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Appendix E:  Schema Definition

This appendix contains the definition of the Data Dictionary schema used by the SDD

transmitter described in Chapter 2.

CREATE SCHEMA � recipient will need to supply AUTHORIZATION information

CREATE TABLE CABINETS
(CABINET_ID CHAR(7)   NOT NULL PRIMARY KEY,
 FREEWAY    CHAR(10)  NOT NULL,
 TEXT       CHAR(255),
 RAMP       SMALLINT  NOT NULL)

CREATE TABLE LOOPS
(LOOP_ID     CHAR(16)  NOT NULL PRIMARY KEY,
 CABINET_ID  CHAR(7)   NOT NULL,
 METERED     CHAR(4)   NOT NULL,
 RD_TYPE     CHAR(30)  NOT NULL,
 DIRECTION   CHAR(12)  NOT NULL,
 LANE_TYPE   CHAR(20)  NOT NULL,
 LANE_NUM    SMALLINT,
 SENSOR_TYPE CHAR(12)  NOT NULL,
 DATA_OFFSET INTEGER   NOT NULL)

CREATE TABLE COORDINATES
(COORD_TYPE CHAR(40) NOT NULL PRIMARY KEY,
 NAME1      CHAR(40) NOT NULL,
 NAME2      CHAR(40) NOT NULL,
 NAME3     CHAR(40) NOT NULL,
 UNIT1     CHAR(40) NOT NULL,
 UNIT2     CHAR(40) NOT NULL,
 UNIT3     CHAR(40) NOT NULL)

CREATE TABLE CABINET_LOCATION
(CABINET_ID CHAR(7)   NOT NULL,
 COORD_TYPE CHAR(40)  NOT NULL,
 AUTHORITY  CHAR(30)  NOT NULL,
 VALUE1     DEC(11,8),
 VALUE2     DEC(11,8),
 VALUE3     DEC(11,8),
 PRIMARY KEY (CABINET_ID, COORD_TYPE, AUTHORITY),
 FOREIGN KEY (COORD_TYPE, AUTHORITY) REFERENCES MEASURES)

CREATE TABLE MEASURES
(COORD_TYPE CHAR(40) NOT NULL,
 AUTHORITY  CHAR(30) NOT NULL,
 REF_SYSTEM CHAR(128) NOT NULL,
 REF_PT1    DEC(11,8),
 REF_PT2    DEC(11,8),
 REF_PT3    DEC(11,8),
 ACCURACY1  DEC(11,8),
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 ACCURACY2  DEC(11,8),
 ACCURACY3  DEC(11,8),
 PRIMARY KEY (COORD_TYPE, AUTHORITY),
 FOREIGN KEY (COORD_TYPE) REFERENCES COORDINATES)

CREATE TABLE LOOP_DATA
(SENSOR_ID       CHAR(15) NOT NULL,
 DATA_TIME       CHAR(30)  NOT NULL,
 VOLUME          SMALLINT  NOT NULL,
 SCAN_COUNT      SMALLINT  NOT NULL,
 FLAG            SMALLINT  NOT NULL,
 LANE_COUNT      SMALLINT  NOT NULL,
 INCIDENT_DETECT SMALLINT  NOT NULL,
 PRIMARY KEY (SENSOR_ID, DATA_TIME))

CREATE TABLE STATION_DATA
(SENSOR_ID       CHAR(15) NOT NULL,
 DATA_TIME       CHAR(30)  NOT NULL,
 VOLUME          SMALLINT  NOT NULL,
 SCAN_COUNT      SMALLINT  NOT NULL,
 FLAG            SMALLINT  NOT NULL,
 LANE_COUNT      SMALLINT  NOT NULL,
 INCIDENT_DETECT SMALLINT  NOT NULL,
 PRIMARY KEY (SENSOR_ID, DATA_TIME))

CREATE TABLE SPEED_TRAP_DATA
(SENSOR_ID       CHAR(15)  NOT NULL,
 DATA_TIME       CHAR(30)  NOT NULL,
 SPEED           DEC(4,1)  NOT NULL,
 LENGTH          DEC(4,1)  NOT NULL,
 FLAGS1          SMALLINT  NOT NULL,
 FLAGS2          SMALLINT  NOT NULL,
 BIN1            SMALLINT  NOT NULL,
 BIN2            SMALLINT  NOT NULL,
 BIN3            SMALLINT  NOT NULL,
 BIN4            SMALLINT  NOT NULL,
 PRIMARY KEY (SENSOR_ID, DATA_TIME))

CREATE TABLE LOOP_FLAGS
(FLAG_VAL        SMALLINT  NOT NULL,
 EXPLANATION     CHAR(24)  NOT NULL,
 PRIMARY KEY (FLAG_VAL))

CREATE TABLE STATION_FLAGS
(FLAG_VAL        SMALLINT  NOT NULL,
 EXPLANATION     CHAR(24)  NOT NULL,
 PRIMARY KEY (FLAG_VAL))

CREATE TABLE INCIDENT_DETECT
(FLAG_VAL        SMALLINT  NOT NULL,
 EXPLANATION     CHAR(24)  NOT NULL,
 PRIMARY KEY (FLAG_VAL))

� To deal with lack of a �text� data type in SQL, we use the construct
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� that follows:
� The lines are stored in a table, keyed by line number and
� measure name.
� To get the text for a given file, select all lines with the
� desired FILE_NAME, in LINE_NUMBER order.

CREATE TABLE ALG_DESCRIPT � Algorithms used to extract data from
                          � the real data stream.
(FILE_NAME CHAR(16) NOT NULL,
 LINE_NUMBER  INTEGER  NOT NULL,
 LINE_TEXT    CHAR(125),
 PRIMARY KEY (FILE_NAME, LINE_NUMBER))
;
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Appendix F:  Contents File

This appendix contains an abbreviated version of the Dictionary Contents file created when

the SDD transmitter described in Chapter 2 receives a legacy dictionary. Since the complete

file is approximately 450 kilobytes in size, this version is heavily edited.

TABLE ALG_DESCRIPT
COLUMN (FILE_NAME, LINE_NUMBER, LINE_TEXT)
�TmsLoop.java�, 0, �� ;
�TmsLoop.java�, 1, �� ;
�TmsLoop.java�, 2, �/**� ;
�TmsLoop.java�, 3,
� * Encapsulates a TMS loop sensor in packed format, plus other fields� ;
�TmsLoop.java�, 4,
� * necessary to support SDD.  This is an immutable class which may� ;
�TmsLoop.java�, 5,
� * only be initialized from a TMS data block.� ;

... the remainder of the TmsLoop.java file

�TmsStation.java�, 0, �� ;
�TmsStation.java�, 1, �� ;
�TmsStation.java�, 2, �/**� ;
�TmsStation.java�, 3, � * Encapsulates a TMS station in packed format� ;
�TmsStation.java�, 4, � */� ;
�TmsStation.java�, 5, �� ;
�TmsStation.java�, 6, �� ;
�TmsStation.java�, 7, �public class TmsStation extends TmsData� ;
�TmsStation.java�, 8, �{� ;
�TmsStation.java�, 9, �  /**� ;
�TmsStation.java�, 10,
�   * Constructs a Tmsstation using the 3 bytes of data at� ;

... the remainder of the TmsStation.java file

�TmsTrap.java�, 0, �� ;
�TmsTrap.java�, 1, �/**� ;
�TmsTrap.java�, 2,
� * Encapsulates a TMS speed trap in packed format.  Data covers � ;
�TmsTrap.java�, 3, � * a period of 20 seconds.� ;
�TmsTrap.java�, 4, � *� ;

... the remainder of the TmsTrap.java file

TABLE COORDINATES
COLUMN (COORD_TYPE,NAME1,NAME2,NAME3,UNIT1,UNIT2,UNIT3)
�spherical�, �x�, �y�, �z�,
             �kilometers�, �kilometers�, �kilometers� ;
�geodetic�, �latitude�, �longitude�, �altitude�,
            �degrees�, �degrees�, �feet� ;
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�state plane�, �x�, �y�, �not used�,
               �miles�, �miles�, �not used� ;
�linear�, �mile marker�, �not used�, �not used�,
          �miles�, �not used�, �not used� ;

TABLE MEASURES
COLUMN (COORD_TYPE, AUTHORITY, REF_SYSTEM,
        REF_PT1, REF_PT2, REF_PT3,
        ACCURACY1, ACCURACY2, ACCURACY3)
�geodetic�, �WSDOT�, �NAD23�, 0, 0, 0, 0.001, 0.001, 0.001 ;
�geodetic�, �UW ITS group�, �NAD89�, 0, 0, 0, 0.001, 0.001, 0.001 ;
�linear�,�WSDOT GIS Section�,�WSDOT 1997', 0, NULL, NULL, 0.01, NULL, NULL
;
�linear�,�TMC RTDB�,�WSDOT 1997', 0, NULL, NULL, 0.01, NULL, NULL ;

TABLE LOOP_FLAGS
COLUMN ( FLAG_VAL, EXPLANATION )
0, �Good Data� ;
1, �Short Pulse� ;
2, �Chatter� ;
3, �Outside Vol/Occ Envelope� ;
4, �Reserved� ;
5, �Reserved� ;
6, �Operator Disabled� ;
7, �Bad Loop� ;

TABLE STATION_FLAGS
COLUMN ( FLAG_VAL, EXPLANATION )
0, �Data not Usable� ;
1, �Data Usable� ;

TABLE INCIDENT_DETECT
COLUMN ( FLAG_VAL, EXPLANATION )
0, �No Incident� ;
1, �Tentative� ;
2, �Occurred� ;
3, �Continuing� ;

TABLE CABINETS
COLUMN ( CABINET_ID, FREEWAY, TEXT, RAMP )
�ES-059D�, �I-5�, ��S170thSt��, 0 ;
�ES-068D�, �I-5�, ��S154thSt��, 0 ;
�ES-069D�, �UNKNOWN�, �UNKNOWN�, 0 ;
�ES-074D�, �I-5�, ��S129thSt��, 0 ;
�ES-079D�, �I-5�, ��SNorfolkSt��, 0 ;

... one entry for each cabinet in the legacy data dictionary.

TABLE CABINET_LOCATION
COLUMN ( CABINET_ID, COORD_TYPE, AUTHORITY, VALUE1, VALUE2, VALUE3 )
�ES-059D�,�linear�,�TMC RTDB�,153.51, NULL, NULL ;
�ES-059D�,�linear�,�WSDOT GIS Section�,153.510000, NULL, NULL ;
�ES-059D�,�geodetic�,�WSDOT�,47.449, -122.267, NULL ;
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... one entry for each set of coordinates (possibly several per cabinet).

TABLE LOOPS
COLUMN ( LOOP_ID, CABINET_ID, METERED, RD_TYPE, DIRECTION,
         LANE_TYPE, LANE_NUM, SENSOR_TYPE, DATA_OFFSET )
�ES-059D:_MNH__5�, �ES-059D�, �NO�, �mainline�, �northbound�,
�HOV mainline�, 5, �loop�, 16 ;
�ES-059D:_MN_Stn�, �ES-059D�, �NO�, �mainline�, �northbound�,
�mainline�, 0, �station�, 19 ;

... one entry for each loop in the legacy dictionary.
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